Package: regsem 1.9.5

regsem: Regularized Structural Equation Modeling

Uses both ridge and lasso penalties (and extensions) to penalize specific parameters in structural equation models. The package offers additional cost functions, cross validation, and other extensions beyond traditional structural equation models. Also contains a function to perform exploratory mediation (XMed).

Authors:Ross Jacobucci [aut, cre], Kevin Grimm [ctb], Andreas Brandmaier [ctb], Sarfaraz Serang [ctb], Rogier Kievit [ctb], Florian Scharf [ctb], Xiaobei Li [ctb], Ai Ye [ctb]

regsem_1.9.5.tar.gz
regsem_1.9.5.zip(r-4.5)regsem_1.9.5.zip(r-4.4)regsem_1.9.5.zip(r-4.3)
regsem_1.9.5.tgz(r-4.4-x86_64)regsem_1.9.5.tgz(r-4.4-arm64)regsem_1.9.5.tgz(r-4.3-x86_64)regsem_1.9.5.tgz(r-4.3-arm64)
regsem_1.9.5.tar.gz(r-4.5-noble)regsem_1.9.5.tar.gz(r-4.4-noble)
regsem_1.9.5.tgz(r-4.4-emscripten)regsem_1.9.5.tgz(r-4.3-emscripten)
regsem.pdf |regsem.html
regsem/json (API)

# Install 'regsem' in R:
install.packages('regsem', repos = c('https://rjacobucci.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/rjacobucci/regsem/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

openblascpp

6.63 score 14 stars 77 scripts 558 downloads 2 mentions 13 exports 10 dependencies

Last updated 2 years agofrom:5de69fa5ea. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 19 2025
R-4.5-win-x86_64OKJan 19 2025
R-4.5-linux-x86_64OKJan 19 2025
R-4.4-win-x86_64OKJan 19 2025
R-4.4-mac-x86_64OKJan 19 2025
R-4.4-mac-aarch64OKJan 19 2025
R-4.3-win-x86_64OKJan 19 2025
R-4.3-mac-x86_64OKJan 19 2025
R-4.3-mac-aarch64OKJan 19 2025

Exports:cv_regsemdet_rangedet_range_parefaModelextractMatricesfit_indicesmulti_optimpen_modregsemstabselstabsel_parstabsel_thrxmed

Dependencies:lavaanMASSmnormtnumDerivpbivnormquadprogRcppRcppArmadilloRsolnptruncnorm

Regsem Package

Rendered fromshort_intro.Rmdusingknitr::knitron Jan 19 2025.

Last update: 2021-03-22
Started: 2018-02-17

Readme and manuals

Help Manual

Help pageTopics
The main function that runs multiple penalty values.cv_regsem
Determine the initial range for stability selectiondet_range
Determine the initial range for stability selection, parallel versiondet_range_par
Generates an EFA model to be used by lavaan and regsem Function created by Florian Scharf for the paper Should regularization replace simple structure rotation in Exploratory Factor Analysis - Scharf & Nestler (in press at SEM)efaModel
This function extracts RAM matrices from a lavaan object.extractMatrices
Calculates the fit indicesfit_indices
Multiple starts for Regularized Structural Equation Modelingmulti_optim
Takes either a vector of parameter ids or a vector of named parameters and returns a vector of parameter idsparse_parameters
Penalized model syntax.pen_mod
Plot function for cv_regsemplot.cvregsem
Calculates the objective function values.rcpp_fit_fun
Calculates the gradient vector based on Von Oertzen and Brick, 2014rcpp_grad_ram
Compute quasi Hessianrcpp_quasi_calc
Take RAM matrices, multiplies, and returns Implied Covariance matrix.rcpp_RAMmult
Regularized Structural Equation Modeling. Tests a single penalty. For testing multiple penalties, see cv_regsem().regsem
Stability selectionstabsel
Stability selection, parallelized versionstabsel_par
Tuning the probability threshold.stabsel_thr
print information about cvregsem objectsummary.cvregsem
Summary results from regsem.summary.regsem
Function to performed exploratory mediation with continuous and categorical variablesxmed